Exosomes derived from cardiac telocytes exert positive effects on endothelial cells.
نویسندگان
چکیده
Telocytes are novel cells that have been documented in the interstitium of multiple organs; however, their role in the heart remains unclear. This study aimed to identify cardiac telocytes by their morphological and molecular features and investigate whether their exosomes affect cardiac endothelial cells. To this end, rat cardiac telocytes were cultured and stained with methylene blue, Janus Green B, and MitoTracker green, or with antibodies for established cell surface markers, and examined by microscopy. In addition, telocyte organelles and exosome release were examined by transmission electron microscopy. To investigate exosome functions, we isolated exosomes from telocytes and co-cultured them with endothelial cells in vitro, as well as transfusing them into a rat model of myocardial infarction. We confirmed that cultured telocytes exhibit normal characteristics, including long, thin prolongations with a moniliform appearance, as well as positive expression of c-Kit, CD34, and vimentin. Furthermore, we observed mitochondria throughout the cell body and telopodes, and found that telocytes actively secrete exosomes. Interestingly, endothelial cells cultured with telocyte supernatants or exosomes exhibited increased proliferation, migration, and formation of capillary-like structures, and these effects were attenuated when exosomes were depleted from telocyte supernatants. Finally, treating myocardial infarction-induced rats with telocyte exosomes resulted in decreased cardiac fibrosis, improved cardiac function, and increased angiogenesis. Taken together, our results provide novel insight into cardiac telocytes, suggesting that they communicate with neighboring endothelial cells via exosome secretion and that these exosomes exert potentially beneficially effects.
منابع مشابه
Exosomes Secreted by Normoxic and Hypoxic Cardiosphere-derived Cells Have Anti-apoptotic Effect
Cardiosphere-derived cells (CDCs) have emerged as one of the most promising stem cell types for cardiac protection and repair. Exosomes are required for the regenerative effects of human CDCs and mimic the cardioprotective benefits of CDCs such as anti-apoptotic effect in animal myocardial infarction (MI) models. Here we aimed to investigate the anti-apoptotic effect of the hypoxic and normoxic...
متن کاملExosomes Secreted by Normoxic and Hypoxic Cardiosphere-derived Cells Have Anti-apoptotic Effect
Cardiosphere-derived cells (CDCs) have emerged as one of the most promising stem cell types for cardiac protection and repair. Exosomes are required for the regenerative effects of human CDCs and mimic the cardioprotective benefits of CDCs such as anti-apoptotic effect in animal myocardial infarction (MI) models. Here we aimed to investigate the anti-apoptotic effect of the hypoxic and normoxic...
متن کاملTelocytes are the common cell of origin of both PEComas and GISTs: an evidence-supported hypothesis
We advance the hypothesis that the telocyte might be the cell of origin of both PEComas (perivascular epithelioid cell tumours) and GISTs (gastro-intestinal and extra-gastrointestinal stromal tumours). The hypothesis is supported by data from the literature reporting that both PEComas and GISTs, as well as telocytes, share the expression of several markers. These data were supplemented by origi...
متن کاملExosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury
This study is aimed at investigating whether human umbilical cord mesenchymal stem cell- (hucMSC-) derived exosomes (hucMSC-exosomes) have a protective effect on acute myocardial infarction (AMI). Exosomes were characterized under transmission electron microscopy and the particles of exosomes were further examined through nanoparticle tracking analysis. Exosomes (400 μg protein) were intravenou...
متن کاملExosomes Derived from Human Endothelial Progenitor Cells Accelerate Cutaneous Wound Healing by Promoting Angiogenesis Through Erk1/2 Signaling
Chronic skin wounds represent one of the most common and disabling complications of diabetes. Endothelial progenitor cells (EPCs) are precursors of endothelial cells and can enhance diabetic wound repair by facilitating neovascularization. Recent studies indicate that the transplanted cells exert therapeutic effects primarily via a paracrine mechanism and exosomes are an important paracrine fac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of translational research
دوره 9 12 شماره
صفحات -
تاریخ انتشار 2017